Electrolyzed Water as a Novel Sanitizer in the Food Industry: Current Trends and Future Perspectives

PHILIP NEL VP TECHNICAL AND R&D RADICAL WATERS – CITREX CHILE

A NEW ECO-SANITISER

- Electrochemically Activated Water (ECA) or Electrolyzed Water (EW)
 - Disinfectant Anolyte (HOCl) and Detergent Catholyte (NaOH)
- Produced on-site from regular water and salt
- Popular due to simplicity of production
- Actively used in a number of applications in:
 - Agriculture
 - Medical sterilization
 - Food sanitation
 - Livestock Management
 - Other fields
 - antimicrobial technique

- Developed in Russia, used in Japan since the 1980's in medical institutions for disinfection.
- Use expanded into livestock management and agriculture.
- Electrolyzed Reduced Water (ERW or Catholyte) 1931 agriculture + medical
- 1966 Ministry of health declared Catholyte effective in treating:
 - Diarrhoea, indigestion, hyperacidity and antacid and home use.
- Technological advances > popularity better equipment available
- ECA Anolyte became a promising non-thermal disinfectant

HOW ECA IS MADE

Basic Electrolyzed Water (BEW) Electrolyzed Reduced Water (ERW) Alkaline Electrolyzed Water (AIEW) Catholyte

> Sodium Hydroxide (NaOH) Hydrogen Gas (H₂) pH 10-13 ORP -800 to -900mV

TYPES OF ECA-PRODUCING SYSTEMS

- Many systems for producing ECA available worldwide
 - Two main types with and without diaphragms (pH differences),
 - single/dual stream
- AEW, NEW and SAEW (Anolyte) powerful sanitizer
- BEW (Catholyte) remove dirt and grease strong reducing potential
- Brine, flow rate, voltage, amperage, available chlorine concentration
- Physiochemical properties of ECA varies depending on:
 - Concentration of sodium chloride (NaCl)
 - Current
 - Time of electrolysis
 - flow of water

BASIC PROPERTIES OF ECA

• Antimicrobial efficacy Influenced by pH, ORP and FAC

BASIC PROPERTIES OF ECA

- Other factors having an influence on properties of ECA
 - current
 - water flow rate
 - salt concentration
 - storage conditions
 - electrolyte
 - electrode material
 - water temperature
 - water hardness

ADVANTAGES AND DISADVANTAGES

Advantages	Disadvantages		
Environmentally friendly – Salt, water, electricity	High Initial cost of equipment		
Returns to original state after use.	Tendency to lose its antimicrobial potential quickly		
Safety – Humans and the environment	Reduction in concentration of chlorine over time		
On-site production	Pungent chlorine gas formation at pH <5		
Broad-spectrum antimicrobial	Phytotoxicity, irritation and corrosion - Acidic Anolyte		
No microbial resistance	Reduction in efficacy – storage and organic matter		
Sensory quality of food products not affected			
Cost effective – cost 0.04 \$/L			

ANTIMICROBIAL MECHANISM FOR ZERO TOLERANCE

- Active chlorine species (Cl₂, HOCl and OCl⁻) inactivation of micro.
- Oxidants reactive oxygen species (O_3 and H_2O_2) also contribute.
- HOCl neutral charge diffuse through cell
- HOCl attack on out outer membrane (A) and
- Also inside the cell (B) and (C)
- OCl⁻ unable to penetrate cell membrane
- Antimicrobial activity due to:
 - Inhibition of enzyme activity
 - Damage to membrane and DNA
 - Membrane transport capacity

APPLICATION OF ECA – IN-VITRO

- Anolyte strong antimicrobial activity in vitro avg. of >6 log CFU/ml
 - Variety of bacteria. Also effective against yeast, mould, spores.
- Foodborne pathogens different sensitivities towards Anolyte
- Rahman et al (2010): increase in CT reduction in log CFU/ml
 1 min significant, 3, 5, 10 min not significant reduction
- Factors influence antimicrobial activity
 - ORP, pH, FAC, and Temperature

Microorganisms	EW type	Exposure time (min)	Reduction (log CFU/mL)	^a Chlorine conc. (ppm)	рН	ORP (mV)	Temp.
Escherichia coli	StAEW	1	6.0	50.3	2.6	1140	20
	SAEW	1	5.0	23.7	5.6	940	20
	SAEW	2	6.2	23.7	5.6	940	20
	NEW	1	> 5.4	89	8.55	733	20
E. coli 0157:H7	StAEW	1	6.0	50	2.6	1100	35
	LcEW	1	6.0	5	6.3	500	35
	LCEW	1.5	6.4	10	6.8	700	23
	SAEW	3	5.2	1.5	6.5	805	25
	NEW	1	ND	21	6.3	265	20
	AEW	1	ND	25	3.0	1079	20
	AEW	1	6.3	63	2.4	1183	22
<i>E. coli</i> 0104:H4	StAEW	2	5.1	20	3.1	1150	20
	SAEW	2	4.2	10	3.5	950	20
	StAIEW	ž	1.5	ŇĀ	11.1	-840	20
	SAIEW	2	1.5	NA	10.4	-715	20
Salmonella spp.	NEW	ī	> 5.5	89	8.5	733	20
	StAEW	i	6.1	50.6	2.6	1140	20
	SAEW	2	6.1	23.7	5.6	940	20
	StAEW	1	6.1	50	2.6	1100	35
	LCEW	1	6.3	5	6.3	500	35

REPLACING CHEMICALS IN FOOD INDUSTRY

- Beverages CIP
 - Water, CSD, Beer
- Fruit and Vegetables
 - Applied via dipping, spraying, soaking, washing during processing
- Poultry and Meat
 - Direct, fogging, CIP/COP, Equipment, water
- Seafood and Fish
 - Pre-processing, direct, CIP/COP, equipment, water, ice

APPLICATION OF ECA – OTHER

- Agriculture
 - Growth promotion, antifungal, disinfecting greenhouses, packing houses
 - Hydroponics control of biofilm
- Livestock
 - Replacing antibiotics, increase FCR, fogging and sanitation of barns and houses
- Hospitality
 - Metal/plastic, cutlery, plates, glasses, cutting boards in the kitchen
 - Other areas and water supply legionella
- Hospitals
 - Hard surfaces, equipment
 - Scopes, infectious waste

FUTURE PERSPECTIVES

- ECA approved by US regulators
 - Green and sustainable solution for home/industry use
 - Recently (USDA) approved ECA in organic products
- EU Biocides Regulation 528/2012 (EU BPR)
- Growing trend for commercialization
- In future most industry likely to start using ECA
 - Simplicity, environmentally friendly, human safety aspect, efficacy, etc.
- Not sufficient knowledge more advertisement required
- Over the next 10 years most food plants will start using ECA

- ECA Anolyte exhibits strong bactericidal, virucidal and fungicidal effects
- Already operational in various sectors
- Acidic Anolyte corrosive and affects organoleptic properties some foods
 - Solved with introduction and development of slightly acidic and neutral Anolyte.
- Combination of multiple techniques (hurdle enhancement) advantages:
 - Micro reduction, enhanced shelf-life, food quality maintenance.
- Various factors govern the efficacy of ECA
 - Monitored and managed during production and application
- Advanced and dynamic ECA systems overcome challenges
 - Available through RW-CITREX CHILE

THANK YOU

Reference: Rahman, S.M.E., Khan, I., Oh, D.H., 2016. Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. Compr. Rev. Food. Sci. F 15, 471–490.