Systems and technologies for effective Quality Management

Tim Jackson, Ph.D VP Food Safety, Regulatory and Social Compliance Driscoll's of the Americas

Our mission is to provide food safety professionals worldwide with a forum to exchange information on protecting the food supply

Elements of effective product quality systems

- Quality management system and related processes
- Management commitment and quality culture
- Transparency and communication
- Validation and verification
- Technological solutions

Quality management system and related processes

- Leadership
 - Commitment and responsibilities
- Planning
 - Objectives, actions to address risks
- Support
 - Resources, competence, communication
- Operations
 - Planning and control, definition of requirements, control of non-conformances
- Performance evaluation
 - Verification, management review
- Improvement
 - Non-conformance, corrective actions

Process mapping

Management system and quality culture

- Management commitment
- Quality policy
- Food Safety and quality culture
- Behavior-based quality

Management commitment

"Quality is about trust. Each and every one of us has the power to influence this trust through our dedication to the quality of our products and through our passion and leadership."

Paul Bulcke ChiefExecutive Officer

Quality culture

- Reflected in behaviors employees routinely practice and demonstrate
 - Employees constructively learn from peers the critical food safety assumptions and behaviors that then cascade throughout the organization to influence all
- Businesses reflect food safety culture through a variety of factors:
 - Priorities and attitudes;
 - Perceptions and knowledge of food hazards;
 - Confidence in food safety requirements;
 - 'Ownership' of their food safety responsibilities;
 - Competence;
 - Internal leadership;
 - Employee involvement;
 - Communications within the business.

GMA Science and Education Foundation 2015

Behavior-based quality

Are you ready to BBQ Behaviour-Based Quality and how to get there?

Transparency and communication

- Clear definition of requirements, relevant parameters and parameter limits
- Specifications and contracts
- Quality monitoring scheme and Standard Operating Procedures
- Defined monitoring and verification activities

Specifications

PRODUCT BULLETN PB.561 VERSION 09.0316 UNRESTRICTED WHOLEMILK POWDER Regular Regular Wholemilk Powder is a soluble powder made by spray drying fresh pasteurised wholemilk

Product Characteristics

- > Good solubility
- > Full fat content
- > Rich creamy flavour

Suggested Uses

- > Wide range of applications including reconstituted milk, fermented milk foods, yoghurt, ice cream mixes and confectionary products.
- > Is extensively used as an ingredient in bakery products and snack foods.
- > Has consistent and uniform composition, which is imperative in formulated products.
- > Is an ideal milk source for any situation where regular liquid milk supply or refrigeration is not available.
- Not for use in infant formula for infants less than 12 months

Packaging

Multi-wall bag with a paper outer and an inner plastic liner

No staples or metal fasteners are used

Forters to counsile direct limited (Forterstand and the studentism, affiliation, appression, suppliers and distribution main no comparabilition or version and the scoressing, absolute or comparational or all information and/or optimizer contained in the document or the balance of the scoressing absolute and scoressing absolute and scoressing absolute and scoressing absolute and scoressing absolute absolut

Driscoll's

Only the Finest Berries

Storage and Handling

Wholemilk Powder is hygroscopic and can absorb odours. Therefore adequate protection is essential. It is recommended that product is stored at below 25°C, relative humidity below 65% and in an odour free environment. Stocks should be used in rotation preferably within 24 months of manufacture

Typical Compositional Analysis

The analysis results listed in this product bulletin are typical as measured on an "as is" basis. Refer to the selling specification for minimum and maximum limits by parameter.

Protein (N x 6.38) (g/100g)	24.5
Moisture (g/100g)	3.1
Fat (g/100g)	26.3
Total Carbohydrates (g/100g)	40.3
Minerals (g/100g)	5.8

Typical Chemical Analysis

 Titratable Acidity(%m/v)
 <0.15</td>

 Inhibitory substances (IU/ml)
 Not Detected

PRODUCT BULLETIN

WHOLEMILK POWDER Regular

Typical Nutritional Analysis

Energy (kJ/100g)	207		
Calories (kcal/100g)	50		
Energy from fat (kJ/100g)	97(
Calories from fat (kcal/100g)	233		
Total Sugars (lactose) (g/100g)	40.3		
Fibre (g/100g)	<		
Cholesterol (mg/100g)	63		
Saturated fat (g/100g)	17.4		
Trans fat (g/100g)	1.2		
Vitamin A (µg/100g)	200		
Vitamin A (IU/100g)	67(
Vitamin C (mg/100g)	8.0		
Iron (mg/100g)	0.2		
Sodium (mg/100g)	290		
O alaissa (asa(100a)	00/		

Typical Physical Properties

Bulk Density (g/ml)	0.59
Insolubility Index (ml)	<1.0
Colour	Pale cream
Flavour	Creamy
Odour	Clean
Scorched particles	Max B
Foreign matter	Not Detected

Typical Microbiological Analysis

Aerobic Plate Count (cfu/g)	<10,000			
Coliforms (/g)	Not Detected			
Escherichia. coli (/g)	Not Detected			
Yeasts and Moulds (cfu/g)	<50			
Coagulase Positive Staphylococci. (/g)	Not Detected			
Salmonella (/750g)	Absent			

PB.561

VERSION 09.0316

UNRESTRICTED

Quality Assurance

Strict quality control procedures are enforced during manufacture. The manufacturing environment is also subject to regular monitoring and control.

Final product is sampled and tested for chemical, sensory and microbial parameters using internationally recognised procedures.

During storage and shipment, precautions are taken to ensure that the product quality is maintained. Each package is identified, enabling trace back.

Compliance

Halal

> CODEX STAN 207

Suggested Labelling

Wholemilk Powder

Allergens: Contains Milk and Dairy products. For additional information refer to the allergen statement

Country regulations for product labelling vary. Fonterra advises customers that they need to check local regulations to determine the correct labelling of this ingredient

Additional Information

Fonterra will only ship this product to countries listed on the Import Eligibility Statement and bidders Contracting Information File.

Portant Do-control Group Introd Fortnam and to accidation, attiliation, agente, accident and other portant expression filter or a summarise of all a prior to the accinent, accident prior or to an annual register and the prior portant contrained in this document of the this was subshift by equival Introduct as. The information and/or performance accident and the accument of the prior accident and the accident accident and the accident accide

Quality monitoring scheme

Produ	ct Category:	Confectionery	Product Group:	Chocolate	Model QMS:	Choo Manuf	colate facture	Date:	Sep-14			
Inspection Stage	Inspection Point	Inspected By	Char. Classification	Inspection Characteristic	Inspection characteristic QCAMM	CCP /CP / Monit.	Req / Opt	Sampling ~	Inspection Method	Inspection method QCAMM	Specification / Evaluation	Corrective Actions
fining (5	roller)	-		-				-		-		
03	Chocolate mass refining	Operator	Particle & Droplet Size Dist.	Particle size	10161	CP	R	Every 2 hrs or every recipe for each refiner	Malvern - Laser Diffraction (LI 33.122) Micrometer (LI- 33.121)	33030 10657	Target specification particle size.	Adjust refiner settings. If particle size cannot be achieved stop refiner and report to Shift Manager and Engineering
03	Chocolate mass refining	Operator	Particle & Droplet Size Dist.	Particle size	10161	M	R	Once a week per refiner - 3 point particle size check across the 5th roller (motor, centre, water).	Malvern - Laser Diffraction (Ll 33.122) Micrometer (Ll- 33.121)	33030 10657	Particle size range between 3 point across the roll vary no more than 3µ difference	Contact Engineering.
03	Chocolate mass refining	Operator	Line Fit	Dry running	35043	Μ	R	Every recipe change or once per shift per refiner	Visual Inspection	98999	Clean and check operation of	Dry clean sensor with brush or cloth
03	Chocolate mass refining	Operator	Line Fit	Knife integrity	12176	Μ	R	Determine frequency based on no more than 3mm	Visual	98999	Knife change frequency within limit of	Replace Knife

Validation and verification

- Validation of control measures, methods and equipment
- Verification procedures and frequencies defined
- Audits and certification
- Tracking and trending of data
- Corrective and preventive actions

Definitions (Codex CAC/RCP-1 (1969), Rev.3 (1997))

- Validation
 - Obtaining evidence that a control measure or combination of control measures, if properly implemented, is capable of controlling the hazard to a specified outcome. (TDT, fluid flow, heat penetration, Temperature distribution)
- Verification
 - The application of methods, procedures, tests and other evaluations, in addition to monitoring, to determine whether a control measure is or has been operating as intended
- Monitoring
 - The act of conducting a planned sequence of observations or measurements of control parameters to assess whether a CCP is under control

Equipment and system validation

FDA 2011 Process validation: General principles and practices

Verification activities

- Supplier audits
- Internal audits and certification
- Equipment calibration and performance checks
- Observation of functioning of control measures
- Evaluation of parameters during process
- Testing of raw materials or finished products

Trending monitoring and verification data

Problem-solving approaches

Go-See Think Do process

Source Nestec GSTD Generic November 2013

DMAIC approach to solving problems

- Define phase
 - Define the process to be improved and establish goals
- Measure phase
 - Measure the current state
- Analyze phase
 - Develop cause and effect theories
 - Scientifically evaluate cause and effect linkage
- Improve phase
 - Take action to address identified cause
- Control phase
 - Measure to verify improvement has taken place
 - Take actions to sustain the improvement

Problem

M

www.isixsigma.com: Chew Jian Chieh

Tools used in root cause analysis

5-why in root cause analysis

Technological solutions

- Databases
- In-line monitoring solutions
- Center lining of equipment
- Solutions to design out problems
- Improvements to streamline
 processes

Concepts from Total Productive Maintenance (TPM)

Jidoka (Autonomation)

 Design equipment to partially automate the manufacturing process (partial automation is typically much less expensive than full automation) and to automatically stop when defects are detected.

Poka-Yoke (Error Proofing)

 Design error detection and prevention into production processes with the goal of achieving zero defects.

In-line monitoring systems

Sources: Foodengineeringmag.com; Unitec, ipinimg.com; bbctechnoloties.com

Center-lining a process

Four steps to "centerline" a process:

- Identify the important process factors or "variables"
- Determine the best settings and ranges for all of the important variables – by grade or product if multiple products are being produced
- Determine how these variables affect the process and the product
- Ensure that the center-lined settings are always used during production (visual or software tools)

http://blog.dataparcsolutions.com/how-to-centerline-a-process

Defect elimination by design

Improvements to streamline processes

Only the Finest Berrie

© 2017 IBM Corporation

