Electrolyzed Water as a Novel Sanitizer in the Food Industry: Current Trends and Future Perspectives

PHILIP NEL
VP TECHNICAL AND R&D
RADICAL WATERS – CITREX CHILE
A NEW ECO-SANITISER

- Electrochemically Activated Water (ECA) – or Electrolyzed Water (EW)
 - Disinfectant - Anolyte (HOCl) and Detergent - Catholyte (NaOH)
- Produced on-site from regular water and salt
- Popular due to simplicity of production
- Actively used in a number of applications in:
 - Agriculture
 - Medical sterilization
 - Food sanitation
 - Livestock Management
 - Other fields
 - antimicrobial techniques
History

• Developed in Russia, used in Japan since the 1980’s in medical institutions for disinfection.
• Use expanded into livestock management and agriculture.
• Electrolyzed Reduced Water (ERW or Catholyte) 1931 - agriculture + medical
• 1966 Ministry of health declared Catholyte effective in treating:
 – Diarrhoea, indigestion, hyperacidity and antacid and home use.
• Technological advances > popularity – better equipment available
• ECA Anolyte became a promising non-thermal disinfectant
HOW ECA IS MADE

Acidic Electrolyzed Water (AEW)
Electrolyzed Oxidizing Water (EOW)
Anolyte
- Hypochlorous acid (HOCl)
- Hypochlorite ion (OCl⁻)
- Hydrochloric acid (HCl)
- Oxygen Gas (O₂)
- Chlorine Gas (Cl₂)
 - pH 2-3
 - ORP >1100mV

NEW Neutral Electrolyzed Water
 - pH 7-8
 - ORP 750-900mV

SAEW Slightly Acidic EW
 - pH 5-6.5
 - ORP >850mV

Basic Electrolyzed Water (BEW)
Electrolyzed Reduced Water (ERW)
Alkaline Electrolyzed Water (AIEW)
Catholyte
- Sodium Hydroxide (NaOH)
- Hydrogen Gas (H₂)
 - pH 10-13
 - ORP -800 to -900mV
TYPES OF ECA-PRODUCING SYSTEMS

• Many systems for producing ECA available worldwide
 – Two main types – with and without diaphragms (pH differences),
 – single/dual stream
• AEW, NEW and SAEW (Anolyte) – powerful sanitizer
• BEW (Catholyte) – remove dirt and grease – strong reducing potential
• Brine, flow rate, voltage, amperage, available chlorine concentration
• Physiochemical properties of ECA varies depending on:
 – Concentration of sodium chloride (NaCl)
 – Current
 – Time of electrolysis
 – flow of water
BASIC PROPERTIES OF ECA

• Antimicrobial efficacy Influenced by pH, ORP and FAC

HOCl 80 times more effective than CLO⁻
BASIC PROPERTIES OF ECA

• Other factors having an influence on properties of ECA
 – current
 – water flow rate
 – salt concentration
 – storage conditions
 – electrolyte
 – electrode material
 – water temperature
 – water hardness
ADVANTAGES AND DISADVANTAGES

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmentally friendly – Salt, water, electricity</td>
<td>High Initial cost of equipment</td>
</tr>
<tr>
<td>Returns to original state after use.</td>
<td>Tendency to lose its antimicrobial potential quickly</td>
</tr>
<tr>
<td>Safety – Humans and the environment</td>
<td>Reduction in concentration of chlorine over time</td>
</tr>
<tr>
<td>On-site production</td>
<td>Pungent chlorine gas formation at pH <5</td>
</tr>
<tr>
<td>Broad-spectrum antimicrobial</td>
<td>Phytotoxicity, irritation and corrosion - Acidic Anolyte</td>
</tr>
<tr>
<td>No microbial resistance</td>
<td>Reduction in efficacy – storage and organic matter</td>
</tr>
<tr>
<td>Sensory quality of food products not affected</td>
<td></td>
</tr>
<tr>
<td>Cost effective – cost 0.04 $/L</td>
<td></td>
</tr>
</tbody>
</table>
ANTIMICROBIAL MECHANISM FOR ZERO TOLERANCE

- Active chlorine species (Cl₂, HOCl and OCl⁻) inactivation of micro.
- Oxidants – reactive oxygen species (O₃ and H₂O₂) also contribute.
- HOCl – neutral charge – diffuse through cell
- HOCl attack on out outer membrane (A) and
- Also inside the cell (B) and (C)
- OCl⁻ unable to penetrate cell membrane
- Antimicrobial activity due to:
 - Inhibition of enzyme activity
 - Damage to membrane and DNA
 - Membrane transport capacity
APPLICATION OF ECA – IN-VITRO

• Anolyte strong antimicrobial activity in vitro avg. of >6 log CFU/ml
 – Variety of bacteria. Also effective against yeast, mould, spores.
• Foodborne pathogens – different sensitivities towards Anolyte
• Rahman et al (2010): increase in CT – reduction in log CFU/ml
 – 1 min – significant, 3, 5, 10 min – not significant reduction
• Factors influence antimicrobial activity
 – ORP, pH, FAC, and Temperature
<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>EW type</th>
<th>Exposure time (min)</th>
<th>Reduction (log CFU/mL)</th>
<th>Chlorine conc. (ppm)</th>
<th>pH</th>
<th>ORP (mV)</th>
<th>Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>StAEW</td>
<td>1</td>
<td>6.0</td>
<td>50.3</td>
<td>2.6</td>
<td>1140</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>SAEW</td>
<td>1</td>
<td>5.0</td>
<td>23.7</td>
<td>5.6</td>
<td>940</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>SAEW</td>
<td>2</td>
<td>6.2</td>
<td>23.7</td>
<td>5.6</td>
<td>940</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>NEW</td>
<td>1</td>
<td>>5.4</td>
<td>89</td>
<td>8.55</td>
<td>733</td>
<td>20</td>
</tr>
<tr>
<td>E. coli O157:H7</td>
<td>StAEW</td>
<td>1</td>
<td>6.0</td>
<td>50</td>
<td>2.6</td>
<td>1100</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>LcEW</td>
<td>1</td>
<td>6.0</td>
<td>5</td>
<td>6.3</td>
<td>500</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>LcEW</td>
<td>1.5</td>
<td>6.4</td>
<td>10</td>
<td>6.8</td>
<td>700</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>SAEW</td>
<td>3</td>
<td>5.2</td>
<td>1.5</td>
<td>6.5</td>
<td>805</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>NEW</td>
<td>1</td>
<td>ND</td>
<td>21</td>
<td>6.3</td>
<td>265</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>AEW</td>
<td>1</td>
<td>ND</td>
<td>25</td>
<td>3.0</td>
<td>1079</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>AEW</td>
<td>1</td>
<td>6.3</td>
<td>63</td>
<td>2.4</td>
<td>1183</td>
<td>22</td>
</tr>
<tr>
<td>E. coli O104:H4</td>
<td>StAEW</td>
<td>2</td>
<td>5.1</td>
<td>20</td>
<td>3.1</td>
<td>1150</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>SAEW</td>
<td>2</td>
<td>4.2</td>
<td>10</td>
<td>3.5</td>
<td>950</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>StAEIW</td>
<td>2</td>
<td>1.5</td>
<td>NA</td>
<td>11.1</td>
<td>NA</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>SAEW</td>
<td>2</td>
<td>1.5</td>
<td>NA</td>
<td>10.4</td>
<td>NA</td>
<td>20</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>NEW</td>
<td>1</td>
<td>>5.5</td>
<td>89</td>
<td>8.5</td>
<td>733</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>StAEW</td>
<td>1</td>
<td>6.1</td>
<td>50.6</td>
<td>2.6</td>
<td>1140</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>SAEW</td>
<td>2</td>
<td>6.1</td>
<td>23.7</td>
<td>5.6</td>
<td>940</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>StAEW</td>
<td>1</td>
<td>6.1</td>
<td>50</td>
<td>2.6</td>
<td>1100</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>LcEW</td>
<td>1</td>
<td>6.3</td>
<td>5</td>
<td>6.3</td>
<td>500</td>
<td>35</td>
</tr>
</tbody>
</table>
REPLACING CHEMICALS IN FOOD INDUSTRY

• Beverages – CIP
 – Water, CSD, Beer

• Fruit and Vegetables
 – Applied via dipping, spraying, soaking, washing during processing

• Poultry and Meat
 – Direct, fogging, CIP/COP, Equipment, water

• Seafood and Fish
 – Pre-processing, direct, CIP/COP, equipment, water, ice
APPLICATION OF ECA – OTHER

• Agriculture
 – Growth promotion, antifungal, disinfecting greenhouses, packing houses
 – Hydroponics – control of biofilm

• Livestock
 – Replacing antibiotics, increase FCR, fogging and sanitation of barns and houses

• Hospitality
 – Metal/plastic, cutlery, plates, glasses, cutting boards in the kitchen
 – Other areas and water supply - legionella

• Hospitals
 – Hard surfaces, equipment
 – Scopes, infectious waste
FUTURE PERSPECTIVES

• ECA approved by US regulators
 – Green and sustainable solution for home/industry use
 – Recently (USDA) approved ECA in organic products
• EU Biocides Regulation 528/2012 (EU BPR)
• Growing trend for commercialization
• In future – most industry likely to start using ECA
 – Simplicity, environmentally friendly, human safety aspect, efficacy, etc.
• Not sufficient knowledge – more advertisement required
• Over the next 10 years most food plants will start using ECA
CONCLUSIONS

• ECA Anolyte exhibits strong bactericidal, virucidal and fungicidal effects
• Already operational in various sectors
• Acidic Anolyte – corrosive and affects organoleptic properties some foods
 – Solved with introduction and development of slightly acidic and neutral Anolyte.
• Combination of multiple techniques (hurdle enhancement) – advantages:
 – Micro reduction, enhanced shelf-life, food quality maintenance.
• Various factors govern the efficacy of ECA
 – Monitored and managed during production and application
• Advanced and dynamic ECA systems – overcome challenges
 – Available through RW-CITREX CHILE
THANK YOU